a2 United States Patent

US009479794B2

10) Patent No.: US 9,479,794 B2

He et al. 45) Date of Patent: Oct. 25,2016
(54) RESOURCE EFFICIENT VIDEO (58) Field of Classification Search
PROCESSING VIA PREDICTION ERROR 1015 G 375/240.03

(735)

(73)

")

@

(22)

(65)

(1)

(52)

COMPUTATIONAL ADJUSTMENTS

Inventors: Zhong Li He, Austin, TX (US); Yong

Yan, Austin, TX (US)

Assignee:

FREESCALE SEMICONDUCTOR,
INC., Austin, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2493 days.

Appl. No.: 11/271,693

Filed: Nov. 10, 2005

Prior Publication Data

US 2007/0104272 Al May 10, 2007
Int. CL.

HO04B 1/66 (2006.01)
HO4N 19/523 (2014.01)
HO4N 19/176 (2014.01)
HO4N 19/134 (2014.01)
HO4N 19/102 (2014.01)
HO4N 19/61 (2014.01)
HO4N 19/124 (2014.01)
HO4N 1914 (2014.01)
HO4N 19/152 (2014.01)
HO4N 19/156 (2014.01)
HO4N 19/162 (2014.01)
U.S. CL

CPC ...

HO4N 19/523 (2014.11); HO4N 19/102

(2014.11); HO4N 19/124 (2014.11); HO4N
19/134 (2014.11); HO4N 19/14 (2014.11);
HO4N 197152 (2014.11); HO4N 19/156
(2014.11); HO4N 19/162 (2014.11); HO4N
19/176 (2014.11); HO4N 19/61 (2014.11)

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,488,175 A * 12/1984 Netravaliccc.... 348/409.1
5,134,476 A * 7/1992 Aravind et al. ... 348/415.1
5,550,847 A * 8/1996 Zhu ..o 714/748
5,757,668 A * 5/1998 Zhucccccoveieennn 375/240.16
6,667,698 B2* 12/2003 Apostolopoulos et al. 341/51
6,842,483 Bl 1/2005 Au et al.
FOREIGN PATENT DOCUMENTS
EP 1353514 A2 10/2003

OTHER PUBLICATIONS

Musmann et al, Advances in Picture Coding, IEEE 1985.*
(Continued)

Primary Examiner — Mark Roz

(57) ABSTRACT

A video processing system dynamically adjusts video pro-
cessing prediction error reduction computations in accor-
dance with the amount of motion represented in a set of
image data and/or available memory resources to store
compressed video data. In at least one embodiment, video
processing system adjusts utilization of prediction error
computational resources based on the size of a prediction
error between a first set of image data, such as current set of
image data being processed, and a reference set of image
data relative to an amount of motion in a current set of image
data. Additionally, in at least one embodiment, the video
processing adjusts utilization of prediction error computa-
tion resources based upon a fullness level of a data buffer
relative to the amount of motion in the current set of image
data.

21 Claims, 6 Drawing Sheets

300

304
Buffered Video Data

L.

Decoder

302
Compressed Video Data

Uncompressed Video Data —»| Encoder |— | Data Buffer

308 Computation Control Signal J J \

| \ 306

Dynamic Prediction Error QP . '/_
Reduction Computation |- Coding -t

u pu - Controller

Adjustment Module

A

/— Buffer Fuliness Data

US 9,479,794 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Z.He et al., “Low-Power VLSI Design for Motion Estimation Using
Adaptive Pixel Truncation,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 10, No. 5, Aug. 2000, pp.
669-678.

Y. Liang et al., “Power and Content Aware Video Encoding for
Video Communication over Wireless Networks,” IEEE, SIPS 2004,
pp. 269-274.

S. M. Akramullah et al., “Optimization of H.263 Video Encoding
Using a Single Processor Computer: Performance Tradeoffs and
Benchmarking,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 11, No. 8, Aug. 2001, pp. 901-915.

W. Burleson et al., “Dynamically Parameterized Architectures for
Power-Aware Video Coding: Motion Estimation and DCT,” IEEE
2001, pp. 4-12.

Y. Liang et al., “Analysis and Design of Power Constrained Video
Encoder,” IEEE 6" CAS Symp. on Emerging Technologies: Mobile
and Wireless Comm., Shanghai, China, May 31-Jun. 2, 2004, pp.
57-60.

T.H. Lan et al., “Power Optimized Mode Selection for H.263 Video
Coding and Wireless Communications,” IEEE 1998, pp. 113-117.
“PixelTools Rate Control and H.264,” http://www.pixeltools.com/
rate__control__paperhtml, printed Nov. 15, 2005, 6 pages.

* cited by examiner

U.S. Patent Oct. 25, 2016 Sheet 1 of 6 US 9,479,794 B2

10411.1] 104 1.2 104 [1,3 104 [1,N
eooo0
102 \» 104 [2.1 104 [2.2 104 [2.3 104 [2.N
® ®
. .
Y ®
104 [M.1] | 104 [M.2] | 104 [M.3] see 104 [M.N]
106 108 110 112
16 / 8 8 / 16 / 8 a/
8 8
16 16
8 8
Macroblock 16x8 8x16 8x8
partition partition partition
114 116 118 120
8 / 4 / 8 / 4 4 /
4 4
8 8 8
4 4
8x8 8x4 4x8 4x4
subpartition subpartition subpartition subpartition

Figure 1 (prior art)

U.S. Patent Oct. 25, 2016 Sheet 2 of 6 US 9,479,794 B2

A\ ' reference frame 206

current frame 202

Figure 2 (prior art)

US 9,479,794 B2

Sheet 3 of 6

Oct. 25, 2016

U.S. Patent

ejeq sseujn4 Jayng i\

Japosag

j—— o 0o o

Jayng ejeq

>

¢ ainb14
y
Jajjonuo) ainpop Juawssnipy
™ Bupo »{ uogejndwon uopanpay
o0 d0 103 uoRoIpald aweukq

90¢€ I\n

A

1
-

ﬁ Jeufiig [o5uo) uonendwo?) 80¢

) J

eleg 0spIA palayng \

y0e

eleq 0apiA passaidwo))

0oe

Japooug

—

¢0e

—

l«—— E}EQ 09pIA passaldwodun

US 9,479,794 B2

Sheet 4 of 6

Oct. 25, 2016

U.S. Patent

$ aunbir4
‘uonejodiayul jaxid Jabajui-gns Aue wiopad uogejodsajul jaxid 1abajul-gns Aue uuopad) uop
pue uonewnss uojow Bulyojew ¥o0|q Joj yoseas pue uopewnss uopoll Buiysiew ¥0(q Joj Y21eas
[@xid-1abajul wiopad ‘60 ‘suogeyndwo? pasealou| \ [oxid-1abaju) unopad ‘6 ‘suoneindwog pasealdag
\ 0y A
444 SOA S84

ON

ZPi0Ysaly | “pasegTe0In0say > QySuIl

Jploysaly] " paseg”uonop > gysuiw

154

d0 X (o) Ap/ANqeIBAY T(9A8 T JaYNg) + 0OBJINWL) X JOJoRJTAARS TIBMOY = PjOYSaIy] paseg 8Inosay

3

d0 X |0€J7|Nll X JOJoe {T9ARS T I9MOd = ploysauy] peseg uojon

\
W

1434 A
l]
Z1G=%) Np 110=%e§"AIp 01@=ej"AIp
ZZW=|o8) Inw 1ZW=1o8) fnw 0ZiN=19ey"Inw
\ ZUN=0%e) |nw] =008y inw OLW=09ey jnw

oy 80y (14

¢Z Rixadwonusjuod > 4o ¢l AixaiduionTIuaWo) S o 40 Axeidwo usuo) s 4o

2104 20v

ooy

U.S. Patent Oct. 25, 2016 Sheet 5 of 6 US 9,479,794 B2

A
Motion Based Threshold 502
504
minSAD
Figure §
A
Resource Based Threshold 602
604
»
minSAD

Figure 6

US 9,479,794 B2

Sheet 6 of 6

Oct. 25, 2016

U.S. Patent

1 ainbi4

eleq
Aungeiieay (ana Jayng

F T e e A «
_ _
“ “ 3|npopy Jusunsnipy
| Xapul SWeyy 2UaKRNRY b uojewns3 ¢ | hw_“_ﬁmw__wn__m_ww_uohﬂhwm
| wayed %20jq papo) '¢ _lv uogoi i 3 uogal "
I 8dA yoojqoioel ‘Z 2Jep 03PIA j W I .\Ip A
“ A —]Pepoeg o 7L B
[0 » uogesuadwo? “
| — uonow Jajuj |
< 1914 Burydojga,
| OVEVD ' O 9L | zi _
[op\e R4 i1l 1 . |
wajjed yoo|q pspo) ‘€
Jopooaq ¢ =] 27AN 9jbuis 1) 23R Yo0[qoI0eN 7 _ |
_ eleg me_m> 6 EJep 08pIA apouw uogopasdenu) | I
— . upoy | pajesuadiuos > uopaipa.d exu) (« |
Ayl |passadwod | Adonug — vogom I
! — geL . — |
" 2] M AV ¥02 ! _
\ vel U it R
- _ 4+ _ ___ » S |
| - | | 7 3 I
! _ Buipos | ——f- |
I SpusnE00 _ WLIOJSUEY) BSJaAL| _ |
_ wiojsues | 4 i |
“ pauueosjpazquenp | |) I
(1ana] 15~0) I
| “ uOfeZIUBNY) 9SISAU) _FIJ]
_ _ v = 201 |
_ [443 (sueJ) B v — “
_ ueo < (leney 15~0) | gxg suel] ‘B AW X Eleq 09pIA
[S D uonezguenp | PXp) wiojsuey | |/ Al_l ! passaidwoaun
— pleMmIo 4 |
_ \ ¥ — |
_t 172 o1l V2 |
||||||||||||| d0
201 . o\\ Jayonuo) Buipon
1

US 9,479,794 B2

1

RESOURCE EFFICIENT VIDEO
PROCESSING VIA PREDICTION ERROR
COMPUTATIONAL ADJUSTMENTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates in general to the field of
information processing, and more specifically to a system
and method for efficiently using video processing resources
by adjusting utilization of prediction error computational
resources in video encoders.

2. Description of the Related Art

The number of electronic devices incorporating multime-
dia technology continues to proliferate. Multimedia technol-
ogy enables a device to use and present multimedia data.
Multimedia data can be used and presented in a variety of
forms including full-motion video, animation, graphics,
audio, and text. Multimedia data can be transmitted to a
variety of devices for use. Such devices include portable
electronic devices such as personal computers, server com-
puters, notebook computers, mobile phones, personal digital
assistants, video playback devices, and any other device
capable of rendering multimedia data.

One of the challenges with digital multimedia relates to
the size of multimedia data and particularly video data.
Uncompressed digital video data in particular requires a
significant number of bits to represent each video frame.
Each video frame can be divided into a number of pixels.
Pixels represent the smallest unit of video that can be
manipulated. Each pixel is represented by a set of bits. For
24-bit color video (8-bits for each of the three color com-
ponents), each uncompressed video frame is, thus, repre-
sented by 24 bits times the number of pixels in each video
frame for a 4:4:4 color format. For example, the relatively
small 4:2:0 video frames of quarter common intermediate
format (QCIF), have 176x144 25,344 luma pixels and
88x72x2=12672 chroma pixels, which requires (25344+
12672)x8 bits per frame for uncompressed video. To avoid
human perceptible flicker and to maintain smooth motion,
video data contains, for example, 30 frames or 60 fields per
second of displayed video and, thus, (25344+12672)x8x30
uncompressed bits/second for QCIF video. It is currently
impractical to transmit and process such a huge amount of
data in a reasonable amount of time.

Digital video compression has become a critical enabling
technology for multimedia storage and transmission.
Because of the huge data rate of raw digital video data,
compression techniques compress a video signal before it
can be transmitted or stored. Differential pulse code modu-
lation (“DPCM?”) and the discrete cosine transform (“DCT”)
are examples of coding technologies proven effective for
successful video compression. DPCM and DCT have
become the standard coding technology for current interna-
tional digital video coding and decoding compression stan-
dards such as the International Telecommunication Union
(“ITU”) H.264, or also called the International Organization
for Standardization/International Electrotechnical Commis-
sion (“ISO/IEC”) MPEG-4 Part 10 Advanced Video Coding
(“AVC”) standard, and other previous H.26x and MPEG-x
standards.

H.264 or MPEG-4 Part 10 AVC utilizes block-based
motion compensation and motion estimation to encode
video data. Video data includes a video sequence of pro-
gressive or interlaced video frames, which may be mixed
together in the same sequence. Each video frame essentially
represents a ‘picture’. When an object has only translational

30

35

40

45

50

55

2

motion from one frame to the next, successive frames are
very similar to preceding frames and, thus, exhibit a strong
temporal correlation. The similarity between successive
frames is referred to as “temporal redundancy.” To achieve
compression, the temporal redundancy between adjacent
frames can be exploited.

One embodiment of video compression involves inter-
coding and intra-coding of video frames. At least one of the
frames is “intracoded”, i.e. coded without using information
other than information in the frame itself. Samples in the
‘intra’ frame are predicted using spatially neighboring
samples of previously coded blocks. In addition to being
used as a reference frame, intraframe coding can be used
when frame-to-frame motion other than translational
motion, such as camera pan, zoom, changes in luminance, or
rotational motion, is present. Remaining frames in a
sequence of intraframes are “interceded”.

Intercoding utilizes motion estimation and motion com-
pensation. Motion estimation technology selects one or
more previous or future frames as a reference(s). (Note: the
description below is written in the context of one previous
frame as the reference frame; however, multiple reference
frames can be used.) Motion compensation predicts frames
from one or more reference frames and coding the predic-
tion. Motion estimation is the process of choosing a refer-
ence frame and determining spatial displacement of an
object in a reference frame and a current frame.

One technique of estimating motion uses a block-match-
ing algorithm (“BMA”). Motion estimation examines the
movement of objects in a video frame sequence to determine
motion vectors representing the estimated motion of the
objects. BMAs estimate motion on the basis of rectangular
blocks and produce one motion vector for each block. As
depicted in FIG. 1, block-matching techniques divide an
M-by-N video frame 102 into MxN blocks of pixels 104
[1,1] through 104 [M,N], where “M” and “N” respectively
represent the number of block rows and block columns in
video frame 102. In at least one embodiment, some blocks
overlap each other. The H.264/MPEG-4 Part 10 AVC sup-
port dividing the sets of image data into mxn blocks that
consist of data generally representing at least the luminance
of pixels in each block. The block sizes generally range from
16x16 pixels to 4x4 pixels. A 16x16 set is generally referred
to as a “macroblock™ 106, and smaller sets are partitions of
a macroblock. For example, a 16x16 macroblock can be
partitioned into 16x8 (108), 8x16 (110), and 8x8 (112) and
sub-partitioned into 8x8 (114), 4x8 (116), 8x4 (118), and
4x4 (120) blocks of pixel data. Smaller blocks can provide
enhanced prediction accuracy for a certain video content.
Each frame can be divided into combinations of macrob-
locks, partitioned macroblocks, and sub-macroblock parti-
tions to enhance prediction accuracy while controlling bit
rates needed to code each frame. In at least one embodiment,
the blocks can be of varying sizes.

FIG. 2 depicts frames and object movement used in a
block-matching technique for interceding video data. For
each block in a current frame 202, motion estimation
searches a predetermined block-matching search area 204 of
the reference frame 206 for a block that best matches (“the
best matching block™) the block in the current frame 202.
Motion estimation uses an error measure to identify the best
matching block. The search is generally confined to a subset
of the macroblocks in the reference frame that represent the
anticipated motion range of an object between the reference
frame and the current frame. Motion estimation uses a
motion vector 208 to represent the translation between the
current block and the best matching block. The error mea-

US 9,479,794 B2

3

sure used to identify the best matching block becomes a
prediction error that represents the difference between the
current block and the best matching block. The motion
vector and the prediction error can be efficiently coded at a
far lower bit rate than individually coding each successive
video frame in a sequence of video frames. Thus, interframe
redundancy is removed and data compression is achieved. A
decoder reconstructs each frame from the motion vector,
prediction error, and reference frames.

Researches have investigated several error measures to
determine the best matching block and to describe the
prediction error. The mean absolute difference (“MAD”) is
generally considered to be the most favored. The MAD is
determined from the sum of absolute difference (“SAD”)
divided by the m x n pixels in each block. The SAD is
represented in Equation [1], and the MAD is represented in
Equation [2]:

SAD = [1]

n m n
[residual; ;| = Z Z |current_block, i~ reference_block, j|
=1 j=1

1=

i

J=1

The better the prediction between the current frame and
the best matching block, i.e. the smaller the MAD of the best
matching block, the smaller the prediction error will be, and,
thus, the bit rate for each frame can be smaller. Usually, a
rate-distortion measurement is used in motion estimation to
balance the MAD and the cost of encoding motion vectors.

Sub-integer pixel motion compensation using interpola-
tion can provide significantly better compression perfor-
mance and visual quality than integer-pixel motion compen-
sation. The H.264/MPEG-4 AVC has one-half and one-
quarter pixel resolution for inter-coded macroblocks, i.e. the
accuracy of motion compensation is a half or quarter pixel
distance. If the horizontal and vertical components of the
motion vector are integers, the current object actually exists
in the reference frame in integer pixel position. If one or both
components of the motion vector are sub-integers, then the
current object exists in an interpolated position between
adjacent samples in the reference frame. However, sub-
integer pixel motion compensation comes at an increased
expense of design complexity and computation time.

U.S. Pat. No. 5,757,668, entitled ‘“Device, Method and
Digital Video Encoder of Complexity Scalable Block-
Matching Motion Estimation Utilizing Adaptive Threshold
Termination”, inventor Qin Fan Zhu, filed May 24, 1995,
and issued May 26, 1998 (“Zhu Patent™) observes that the
ultimate goal in practical video compression is not to
minimize the prediction error (also referred to as a “match-
ing error”) but to optimize the coded video quality under
constraints of a given channel bandwidth and processing
power. The Zhu Patent discusses terminating the search for
a best matching block once the matching error is less than a
predetermined threshold. The reasoning behind the Zhu
Patent is that under certain circumstances, finding the best
matching block neither improves the coded picture quality
nor reduces the bitrate. The Zhu Patent identifies a threshold
value T based upon a linear function of a quantization
stepsize QP (also commonly referred to as a “quantization

10

15

20

25

30

35

40

45

50

55

60

65

4

parameter”) and two coeflicients “a” and “b” as depicted in
Equation [3]:

T=a*QP+b 3]

The coefficients “a” and “b” are monotonically non-increas-
ing function of a processing quota.

QP is a parameter typically used by a video encoder to
regulate how much detail is saved by a video encoder. Video
encoders transform prediction errors into a frequency
domain by a transform that approximates the DCT. QP
determines the step size for associating the transformed
coeflicients with a finite set of steps. Large values of QP
represent big steps that crudely approximate the transform,
so that most of the signal can be captured by only a few
coeflicients. Small values of QP more accurately approxi-
mate the block’s frequency spectrum, but at the cost of more
bits. Thus, when QP is very small, almost all that detail is
retained. As QP is increased, some of that detail is aggre-
gated so that the bit rate drops at the price of some increase
in distortion and some loss of quality. Thus, the threshold T
represents a measure of the quality of video frames.

The Zhu Patent compares the prediction error with the
threshold T. If the prediction error is less than the threshold
T, the search for the best matching block terminates because
continuing the search will result in a nominal improvement
of video quality at best. If the prediction error is greater than
or equal to the threshold T, the motion estimation process
continues searching for the best matching block. Thus, the
Zhu Patent describes how to reduce searches for the best
matching block.

However, prediction error reduction computations by the
encoders and decoders of video processing systems continue
to be very numerous and require a significant amount of
power. Devices with limited computational resources and
power reserves are still often strained by the prediction error
reduction computational requirements of conventional video
data processing.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings. The use of the same reference number throughout
the several figures designates a like or similar element.

FIG. 1 (labeled prior art) depicts image data divided into
macroblocks, macroblock partitions, and macroblock sub-
partitions.

FIG. 2 (labeled prior art) depicts a block-matching tech-
nique for interceding video data.

FIG. 3 depicts a video processing system with dynamic
prediction error reduction computation adjustment.

FIG. 4 depicts a dynamic prediction error reduction
computation adjustment process performed by a dynamic
computation adjustment module of the video processing
system of FIG. 3.

FIG. 5 depicts a relationship between a minimum sum of
absolute difference determination and motion based thresh-
old.

FIG. 6 depicts a relationship between a minimum sum of
absolute difference determination and resource based thresh-
old.

FIG. 7 depicts an encoder for use in the video processing
system of FIG. 3.

DETAILED DESCRIPTION

A video processing system dynamically adjusts video
processing prediction error reduction computations in accor-

US 9,479,794 B2

5

dance with the amount of motion represented in a set of
image data and/or available memory resources to store
compressed video data. In at least one embodiment, video
processing system adjusts utilization of prediction error
computational resources based on the size of a prediction
error between a first set of image data and a reference set of
image data relative to an amount of motion between a first
set of image data and the reference set of image data. The
relative amount of motion can be indicated, for example,
using motion vectors. Additionally, in at least one embodi-
ment, the video processing adjusts utilization of prediction
error computation resources based upon a fullness level of a
data buffer relative to the amount of motion between the first
set of image data and the reference set of image data.

In at least one embodiment, the prediction error, buffer
level availability, and amount of motion are employed to
adjust utilization of prediction error reduction computation
resources by making adjustments based on a motion based
comparison between the complexity level of a set of image
data and a motion based threshold and/or a resource based
comparison between the complexity level of the set of image
data and a resource usage threshold of the video processing
system. In one embodiment, the set of image data represents
a block of pixel data selected from a video frame. In at least
one embodiment, the complexity level of the image data set
relates to the amount of motion represented in the set of
image. The complexity level of the image data set can be
evaluated by comparing an image data set prediction error
with a motion based threshold. The motion based threshold
can be a variable that depends upon an evaluation of the
motion represented by the image data set. In at least one
embodiment, the resource usage threshold represents a mea-
sure of available resources to perform video processing
prediction error reduction computations. For example, data
buffers generally store compressed video to maintain a near
constant output bitrate. As capacity of the data buffer
decreases, an increasing amount of prediction error reduc-
tion computations may need to be performed to better
compress the video data and, thus, preserve buffer capacity.

Adjustable utilization of prediction error computational
resources can effectively adjust processing time and power
consumption to meet the dynamic needs of the video pro-
cessing system while attempting to preserve processed video
quality. Sub-integer pixel interpolation represents one pre-
diction error reduction computational resource that directly
affects processing time and power consumption. At least one
embodiment of the video processing system determines
whether the video processing performs sub-integer pixel
interpolation or not based upon the motion based compari-
son and/or the resource based comparison. Furthermore, in
at least one embodiment, a user can select whether or not to
use prediction error reduction computation adjustment tech-
nology.

FIG. 3 depicts video processing system 300 then receives
uncompressed video data as input, compresses the video
data, buffers the video data, and provides a video bitrate
stream output. The encoder 302 compresses the video data
by encoding the video data in accordance with, for example,
video encoding standards such as H.264/MPEG-4 AVC. As
previously described, block-matching interceding processes
can use sub-integer pixel interpolation to reduce prediction
error associated with an image data set. Reducing the
prediction error allows for more compression and, thus, a
more compact representation of the image data set. Perform-
ing sub-integer pixel interpolation requires utilization of
more prediction error computational resources than integer
pixel interpolation.

10

15

20

25

30

35

40

45

50

55

60

6

The video processing system 300 also includes a data
buffer 304 to provide a predetermined bitrate video stream
to a receiving device. Generally, data can be transmitted at
a predetermined bitrate, often a fixed rate. The size of the
compressed video data from the encoder 302 varies depend-
ing upon the amount of compression applied to a particular
set of video image data. Thus, the encoder is able to send a
set of more compressed video image data at an effectively
faster bitrate than a set of less compressed video image data.
The data buffer 304 temporarily stores compressed video
data supplied by the encoder 302 and transmits the buffered
video stream at a predetermined bitrate, which is generally
a constant bitrate.

The coding controller 306 helps insure that the data buffer
304 does not overflow or underflow. The coding controller
306 includes components that determine the rate control of
encoder 302 and selects between an intra coding mode and
an interceding mode. The data buffer 304 provides a buffer
fullness data signal to coding controller 306 that provides an
indication of the current, remaining data capacity of data
buffer 304. If the data buffer 304 becomes overloaded, one
or more frames of video data will generally be skipped. In
an attempt to avoid skipping frames, the rate controller can
adjust the quantization parameter (“QP”) used by the
encoder 302. During the compression process, the encoder
302 transforms the prediction error into a frequency domain
using a transform in H.264/MPEQ-4 AVC, such as an integer
transform that approximates the discrete cosine transform.
The encoder 302 quantizes the transformed coefficients
using quantization step sizes. The quantization step sizes are
directly determined from the QP. Small values of QP more
accurately represent the prediction error, and, thus, provide
a better picture quality. However, small values of QP result
in less compression and, thus, a higher bitrate per frame.
Likewise, large values of QP represent the prediction error
less accurately and, thus, provide a relatively inferior picture
quality with the benefit of a lower bitrate. Thus, the QP, in
general, represents a degree of complexity of the current
video frame. It also follows that the rate controller can
control the fullness of the data buffer 304 by using the QP
to control the bitrate of the compressed video data.

The dynamic prediction error reduction computation
adjustment module 308 (also referred to herein as “dynamic
computation adjustment module 308 for conciseness)
adjusts utilization of prediction error reduction computation
resources in the encoder 302 by, for example, monitoring the
amount of motion in a first set of image data, monitoring the
prediction error between the current set of image data, and
monitoring the fullness of data buffer 304. The first set of
image data is, for example, the current set of image data
being processed. In at least one other embodiment, a user
can manually control the operational status of the dynamic
computation adjustment module 308 via a power save factor
control signal. In one embodiment, the power save factor
control signal selectively enables and disables the dynamic
computation adjustment module 308. The dynamic compu-
tation adjustment module 308 provides a prediction error
reduction computation adjustment signal to the encoder 302
that adjusts prediction error reduction computational
resource utilization of the encoder 302. In at least one
embodiment, the dynamic computation adjustment module
308 controls whether or not encoder 302 performs sub-
integer interpolation on a set of video image data, such as a
frame of video data. Thus, dynamic computation adjustment
module 308 can indirectly control the amount of compres-
sion for a sets of video image data, the bitrate of the

US 9,479,794 B2

7

compressed video data signal, the resolution of the com-
pressed video data signal, and the fullness of data buffer 304.

The dynamic computation adjustment module 308 can be
implemented using hardware, software, or a combination of
hardware and software. In one embodiment, the video
processing system 300 is implemented in software, stored in
a memory, and executed by a processor of video processing
system 300.

Referring to FIGS. 3 and 4, the dynamic computation
adjustment module 308 operates in accordance with the
dynamic prediction error reduction computation adjustment
process 400 (also referred to herein as “computation adjust-
ment process 400 for conciseness). In at least one embodi-
ment, computation adjustment process 400 determines the
prediction error reduction computation adjustment signal
based on the size of a prediction error between a set of
current image data and a reference set of image data relative
to an amount of motion in the first set of image data.
Additionally, in at least one embodiment, computation
adjustment process 400 determines the prediction error
reduction computation adjustment signal based upon a full-
ness level of data buffer 304 relative to the amount of motion
in the first set of image data.

The computation adjustment process 400 evaluates the
complexity of a set of video image data, such as a video
frame, based on the value of QP for the set of video image
data. In at least one embodiment, the complexity of the set
of video image data is determined to be in one of three
groups based on a comparison between QP and two content
complexity values, respectively labeled Content_Complex-
ity_0 and Content_Complexity_1. The number of and values
of the complexity values used by computation adjustment
process 400 is a matter of design choice based on the overall
encoder performance. The content complexity values are
intended to represent a measure of complexity of the image
data. In at least one embodiment, the measure of complexity
indicates an amount of motion between a current set of
image data and a reference set of image data. Content_Com-
plexity_0 and Content_Complexity_1 are set at the respec-
tive boundaries of small/medium motion and medium/large
motion. Content_Complexity_0 and Content_Complexity_1
can be determined, for example, manually and set to pre-
determined, fixed values or dynamically based on actual
measures of video motion.

Initial operation 402 compares QP for the current set of
image data to Content_Complexity_0. If QP is less than or
equal to Content_Complexity_0, operation 404 respectively
sets the variables mul_fac0O, mul_facl, and div_fac to values
M10, M20, and D10. As explained in more detail below, the
values of the variables mul_fac0, mul_facl, and div_fac are
later used by computation adjustment process 400 to deter-
mine a motion based threshold and a resource based thresh-
old. In operation 406, if QP is greater than Content_Com-
plexity_0 and less than or equal to Content_Complexity_1,
operation 408 respectively sets the variables mul_facO,
mul_facl, and div_fac to values M11, M21, and DI11.
Otherwise, operation 410 respectively sets the variables
mul_facO, mul_facl, and div_fac to values M12, M22, and
D12.

Operation 412 determines a resource based threshold
(“RBT”) based on the values of mul_fac0, QP, buffer level
availability, div_fac), and a wvalue of the variable
Power_Save_Factor. The RBT represents a resource avail-
ability based factor used in determining whether prediction
error computational resources of encoder 302 can be
adjusted to reduce or increase the amount of prediction error
reduction computations, such as pixel interpolation calcula-

25

35

40

45

55

8

tions. The Power_Save_Factor represents the value of the
power save factor control signal. In one embodiment, the
Power_Save_Factor is one of the values in the range from
zero (0) to sixteen (16). Operation 412 sets the RBT in
accordance with Equation [4]:

RBT = Power_Save_Factorx

Buffer_Level Availabilit
(mulffac 0+ (—YJ X QP].

div_fac

Operation 414 determines a motion based threshold
(“MBT”) based on the values of mul_facl, QP, and a value
of the variable Power_Save_Factor. The MBT represents a
motion based factor used in determining whether prediction
error computational resources of encoder 302 can be
adjusted to reduce or increase the amount of prediction error
reduction computations, such as pixel interpolation calcula-
tions. Operation 414 sets the MBT in accordance with
Equation 5:

MBT=Power_Save_Factorxmul-faclxQP [5]-

The variable values established in operations 404, 408,
and 410 make the value of MBT and RBT progressively
higher given a certain buffer fullness level when the com-
plexity of a picture increases.

Operations 416 and 418 determine whether or not to
increase or decrease prediction error reduction computations
of encoder 302. In at least one embodiment, operations 416
and 418 determine whether or not encoder 302 performs
sub-integer interpolation, or a small amount of sub-integer
interpolation. The values of the MBT and, thus, the variable
values from which the MBT is derived, are determined so
that encoder 302 is more likely to perform sub-integer pixel
interpolation as the amount of motion in an image set
increases. Similarly, the values of MBT and, thus, the
variable values from which the MBT is derived, are deter-
mined so that encoder 302 is more likely to perform sub-
integer pixel interpolation as the amount of data buffer
availability decreases.

Operation 416 not only adjusts the amount of prediction
error reduction computations by encoder 302 based upon
motion represented by a set of image data, operation 416
also considers the amount of interceding prediction error.
Thus, if the prediction error is relatively small, then any
increase in image quality due to sub-integer interpolation is
generally nominal at best. To achieve an adjustment deter-
mination based on motion and prediction error, operation
416 compares the minimum sum of absolute difference
(“minSAD”) (determined as in Equation 1) with the MBT. If
the minSAD is less than the MBT, then the amount of
motion represented by the current image data relative to the
prediction error is small enough to decrease prediction error
reduction computations of encoder 302 without significantly
compromising image quality.

FIG. 5 depicts one embodiment of an example relation-
ship between minSAD and the MBT. In the region 502, the
relationship between minSAD and the MBT indicates that
encoder 302 should perform only integer pixel searches
during motion estimation without performing sub-integer
pixel interpolation. In the region 504, the relationship
between minSAD and the MBT indicates that encoder 302
should perform integer pixel searches during motion esti-
mation and perform sub-integer pixel interpolation. Thus, if
the determination in operation 416 is ‘yes’, operation 420
sets the value of the computation adjustment control signal

US 9,479,794 B2

9

to cause encoder 302 to decrease the prediction error reduc-
tion computations. As discussed previously, in at least one
embodiment, decreasing encoder 302 prediction error reduc-
tion computations results in performing only integer pixel
interpolation during block matching motion estimation.

If the MBT is less than or equal to the minSAD, operation
418 determines whether the minSAD is greater than or equal
to the RBT. Operation 418 not only adjusts the amount of
prediction error reduction computations by encoder 302
based upon available memory in data buffer 304, operation
418 also considers the amount of interceding prediction
error and complexity of the current set of image data.

FIG. 6 depicts one embodiment of an example relation-
ship between minSAD and the RBT. In the region 602, the
relationship between minSAD and the RBT indicates that
encoder 302 should perform only integer pixel searches
during motion estimation without performing sub-integer
pixel interpolation. In the region 604, the relationship
between minSAD and the RBT indicates that encoder 302
should perform integer pixel searches during motion esti-
mation and perform sub-integer pixel interpolation.

Operation 418 performs a balancing operation between
the size of the prediction error against the RBT, which
factors in available memory in data buffer 304 and the
amount of motion in the current set of image data. As the
prediction error decreases, video processing system 300 can
tolerate a larger RBT, and, thus, a higher degree of motion
and/or lower available memory in data buffer 304 without
causing memory shortages in data buffer 304 because
decreases in the size of the compressed video data due to
sub-integer interpolation is generally nominal at best. Like-
wise, as the prediction error increases, a larger RBT, and,
thus a higher degree of motion and/or lower available
memory in data buffer, can exceed the memory capacity of
data buffer 304. Accordingly, prediction error reduction
computations, such as sub-integer pixel interpolation, can be
used to reduce the size of the compressed video data stored
in data buffer 304.

To achieve an adjustment determination based on motion
and prediction error, operation 418 compares the minimum
sum of absolute difference (“minSAD”) (determined as in
Equation 1) with the RBT. If the minSAD is less than the
RBT, then the amount of motion and/or the amount of
memory available in data buffer 304 represented by the
current image data relative to the prediction error is small
enough to decrease prediction error reduction computations
of encoder 302 without significantly compromising image
quality. Thus, if the determination in operation 418 is ‘yes’,
operation 420 sets the value of the computation adjustment
control signal to cause encoder 302 to decrease the predic-
tion error reduction computations. As discussed previously,
in at least one embodiment, decreasing encoder 302 predic-
tion error reduction computations results in performing only
integer pixel interpolation during block matching motion
estimation. If the outcome of operation 418 is “no”, then
operation 422 causes encoder 302 to performed increased
prediction error reduction computations, such as an integer
pixel search for block matching and sub-integer pixel inter-
polation. Following operations 420 and 422, computation
adjustment process 400 repeats for the next set of image
data, such as a frame of video data.

Although operations 416 and 418 use the minSAD as a
measure of the prediction error, which also is often repre-
sentative of the complexity of the image data, other mea-
sures can also be used.

FIG. 7 depicts a video encoder 702, which in one embodi-
ment represents encoder 302. The encoder 702 converts the

25

40

45

55

65

10

uncompressed video input data into a compressed video data
bitstream. The uncompressed video input data is provided to
the intra prediction module 704, the interceding module 706,
and a summer 708. The interceding module 706 includes a
motion estimation component 710 that, in at least one
embodiment, operates as previously discussed to produce a
motion vector (“MV”). The motion vector is used by the
intermotion compensation module 712 and encoded by
entropy coding block 720. The dynamic computation adjust-
ment module 308 operates as discussed above to dynami-
cally adjust video processing prediction error reduction
computations in accordance with the amount of motion
represented in a set of image data and/or available memory
resources to store compressed video data. The mixer 708
determines the difference between the uncompressed video
data and either intra-prediction data or inter-motion data as
selected by the coding controller 306, which includes an
intra/inter mode decision engine and a rate control engine.
Intra-prediction data is coded without using information
outside of information within a video frame. In at least one
embodiment, coding controller 306 selects the intra-predic-
tion data for mixing with the uncompressed video data for
the first frame in a sequence and at random access points.
For all remaining image data, inter motion compensation
data is subtracted from the uncompressed video data.

The difference (or residual) data between the uncom-
pressed video data (original video data) and the predicted
data is transformed by forward transform module 714 using
for example a discrete cosine transform (“DCT”) algorithm.
The coefficients from the DCT transformation are scaled to
integers and quantized by quantization module 716. The
coding controller 306 controls the quantization step size via
the control quantization parameter QP supplied to the quan-
tization module 716. The quantized transform coefficients
are scanned by scan module 718 and entropy coded by
entropy coding module 720. The entropy coding module 720
can employ any type of entropy encoding such as Universal
Variable Length Codes (“UVLC”), Context Adaptive Vari-
able Length Codes (“CAVLC”), Context-based Adaptive
Binary Arithmetic Coding (“CABAC”), or combinations
thereof. The entropy coded transform coefficients and intra/
inter coding information (i.e. either intra-prediction mode or
inter-prediction mode information) are transmitted along
with motion vector data for future decoding. When the intra
prediction module 704 is associated with the current entropy
encoded transform coefficients, the intraprediction mode,
macroblock type, and coded block pattern are included in the
compressed video data bitstream. When the interceding
module 706 is associated with the current entropy encoded
transform coefficients, the determined motion vector, mac-
roblock type, coded block pattern, and reference frame index
are included in the compressed video data.

The encoder 702 also includes a decoder 721 to determine
predictions for the next set of image data. Thus, the quan-
tized transform coefficients are inversed quantized by
inverse quantization module 722 and inverse transform
coded by inverse transform coding module 724 to generate
a decoded prediction residual. The decoded prediction
residual is added to the predicted data. The result is motion
compensated video data 726 which is provided directly to
the intraprediction module 704. The motion compensated
video data 726 is also provided to deblocking filter 728
which deblocks the video data 726 to generate deblocked
video data 730, which is fed into the interceding module 706
for potential use in motion compensating the current image
data.

US 9,479,794 B2

11

The compressed video data bitstream is ultimately pro-
vided to a decoder 732. The compressed video data bit-
stream may be stored or further processed before being
provided to decoder 732. The decoder uses the information
in the compressed video data bitstream to reconstruct the
uncompressed video data. In one embodiment, the encoder
702 and decoder 732 code and decode video data in accor-
dance with the H.264/MPEG-4 AVC video coding standard.

Video coding benefits from the dynamic computation
adjustment reducing the coding processing. Since decoder
732 performs a reverse process of encoder 702, computation
reductions by encoder 702 are shared by decoder 732.

Simulation results indicate that the video processing sys-
tem 300 achieves performance improvements by adjusting
utilization of prediction error computational resources while
maintaining a comparable signal-to-noise ratio (“SNR”)
relative to conventional technology. The following tables
tabulate simulation results when video processing system
300 adjusts utilization of prediction error computational
resources by reducing the number of half and quarter pixel
(also referred to as “pel”) interpolations. The simulation
sequences are standard sequences used to measure encoder
performance. The sequences have varying amounts of
motion. Thus, it is expected that performance improvements
of video processing system 300 are particularly noticeable
for video sequences with relatively small amounts of motion
such as the Akiyo and News sequences. The encoder data for
Table 1 and Table 2 was obtained for Quarter Common
Interchange Format (“QCIF”) (176x144 pixels) at 15
frames/second. The encoder data for Table 3 and Table 4 was
obtained for Common Interchange Format (“CIF”) (352x
240 pixels) at 30 frames/second. CIF and QCIF are common
formats for devices with displays of approximately less than
2-3 inches, such as cell phones and personal digital assis-
tants.

Table 1 represents simulation data obtained using con-
ventional encoder technology for a given coding algorithm
and a given coding configuration. Table 2 represents simu-
lation data obtained using video processing system 300
based on the same given coding algorithm and coding
configuration. The signal to noise ratios nominally differ,
and video processing system 300 achieves an average
40.429% reduction in the number of half/quarter pixel
interpolations performed by video processing system 300 as
well as for a decoder during decoding. Thus, video process-
ing system 300 is able to better utilize encoding resources.

TABLE 1
of
Composite Lume frames
Sequence bitrate PSNR PSNR coded
Foreman 64.19 30.27 28.9 198
Akiyo 64.3 42.47 41.7 150
Coastguard 64.44 31.37 29.7 150
Container 63.35 38.09 37 149
News 63.66 36.58 35.5 148
Football 64.11 26.09 24.6 131
Average 64.01 33.196 32.90 152.7
TABLE 2
% of
#of reduction in
Composite ~ Lume frames half/quarter-
Sequence bitrate PSNR PSNR coded pel intp.
Foreman 64.34 30.28 28.9 199 17
Akiyo 64.16 42.1 414 149 79
Coastguard 64.47 31.33 29.7 150 11

40

45

50

55

65

TABLE 2-continued
% of
#of reduction in
Composite ~ Lume frames half/quarter-
Sequence bitrate PSNR PSNR coded pel intp.
Container 63.17 38.02 36.9 149 51
News 64.4 36.27 35.2 149 65
Football 64.29 26.09 24.6 131 34
Average 64.14 33.074 32.78 152.7 40.429
Table 3 represents decoding of simulation data that was
encoded using conventional encoder technology. Table 4
represents decoding of simulation data that was encoded
using video processing system 300. The signal to noise
ratios nominally differ, and video processing system 300
achieves an average 54.8% reduction in the number of
quarter pixel interpolations performed by the decoder, such
as decoder 732. Thus, encoding video data using video
processing system 300 also improves performance of decod-
ers.
TABLE 3
of
Composite Lume frames
Sequence bitrate PSNR PSNR coded
Foreman 382.01 33.18 31.94 400
Akiyo 384.42 44.15 434 300
Coastguard 384.1 31.04 29.4 299
Football 374.33 28.46 27 261
Average 381.22 33.074 32.94 152.7
TABLE 4
% of reduction
of in
Composite Lume frames half/quarter-
Sequence bitrate PSNR PSNR coded pel intp.
Foreman 382.42 33 31.8 400 61
Akiyo 385.45 43.88 43.1 300 83
Coastguard ~ 384.1 31.01 29.4 299 65
Football 373.98 2842 27 261 27
Average 381.49 33.074 32.83 152.7 54.8

Although the present invention has been described in
detail, it should be understood that various changes, substi-
tutions and alterations can be made hereto without departing
from the spirit and scope of the invention as defined by the
appended claims.

What is claimed is:

1. A method of adjusting utilization of prediction error
computational resources of a video processing system dur-
ing processing of video data, wherein the video data includes
multiple sets of image data, the method comprising:

processing the set of image data to generate a prediction

error between a first set of image data and a second set
of image data;
evaluating the prediction error relative to a measure of
motion represented in the first set of image data; and

processing the image data to reduce a prediction error if
one or more conditions of the video processing system
and the evaluation of the prediction error relative to a
measure of motion represented in the first set of image
data indicate a desirability of reducing the prediction
error.

US 9,479,794 B2

13

2. The method of claim 1 wherein one of the conditions
of'the video processing system comprises a fullness measure
of a data buffer that buffers compressed video data.

3. The method of claim 1 wherein one of the conditions
of the video processing system comprises an estimated
measure of an accuracy of the prediction error.

4. The method of claim 1 wherein processing the image
data to reduce a prediction error comprises:

performing sub-integer pixel interpolation of the first set

of image data.

5. The method of claim 1 further comprising:

receiving an input to selectively enable and disable pro-

cessing the set of image data, evaluating the prediction
error, and processing the image data.

6. The method of claim 1 further comprising:

determining if one or more conditions of the video

processing system indicate a desirability of reducing
the prediction error.

7. The method of claim 1 wherein each set of image data
comprises a block of data and the block of data is a member
of the group consisting of: a 16x16 partition of pixel data,
a 16x8 partition of pixel data, an 8x16 partition of pixel data,
an 8x8 partition of pixel data, a 4x8 partition of pixel data,
an 8x4 partition of pixel data, and a 4x4 partition of pixel
data.

8. A non-transitory computer readable medium compris-
ing code stored therein to adjust utilization of prediction
error computational resources of a video processing system
during processing of video data, wherein the video data
includes multiple sets of image data, wherein the code is
executable by a processor to at least:

process the set of image data to generate a prediction error

between a first set of image data and a second set of
image data;

evaluate the prediction error relative to a measure of

motion represented in the first set of image data; and
process the image data to reduce a prediction error if one
or more conditions and the evaluation of the prediction
error relative to a measure of motion represented in the
first set of image data of the video processing system
indicate a desirability of reducing the prediction error.

9. The non-transitory computer readable medium of claim
8 wherein one of the conditions of the video processing
system comprises a fullness measure of a data buffer that
buffers compressed video data.

10. The non-transitory computer readable medium of
claim 8 wherein one of the conditions of the video process-
ing system comprises an estimated measure of an accuracy
of the prediction error.

11. The non-transitory computer readable medium of
claim 8 wherein the code to process the image data to reduce
a prediction error further comprises code to:

performing sub-integer pixel interpolation of the first set

of image data.

12. The non-transitory computer readable medium of
claim 8 wherein the code further comprises code to:

receive an input to selectively enable and disable process-

ing the set of image data, evaluating the prediction
error, and processing the image data.

13. The non-transitory computer readable medium of
claim 8 wherein the code further comprises code to:

10

15

20

25

30

40

45

50

55

14

determine if one or more conditions of the video process-
ing system indicate a desirability of reducing the pre-
diction error.
14. The non-transitory computer readable medium of
claim 8 wherein each set of image data comprises a block of
data and the block of data is a member of the group
consisting of: a 16x16 partition of pixel data, a 16x8
partition of pixel data, an 8x16 partition of pixel data, an 8x8
partition of pixel data, a 4x8 partition of pixel data, an 8x4
partition of pixel data, and a 4x4 partition of pixel data.
15. An apparatus comprising:
a processor;
a memory, coupled to the processor, having code stored
therein and executable by the processor to adjust uti-
lization of prediction error computational resources of
a video processing system during processing of video
data, wherein the video data includes multiple sets of
image data, wherein the code is executable by a pro-
cessor to at least:
process the set of image data to generate a prediction
error between a first set of image data and a second
set of image data;

evaluate the prediction error relative to a measure of
motion represented in the first set of image data; and

process the image data to reduce a prediction error if
one or more conditions of the video processing
system and the evaluation of the prediction error
relative to a measure of motion represented in the
first set of image data indicate a desirability of
reducing the prediction error.

16. The apparatus of claim 15 wherein one of the condi-
tions of the video processing system comprises a fullness
measure of a data buffer that buffers compressed video data.

17. The apparatus of claim 15 wherein one of the condi-
tions of the video processing system comprises an estimated
measure of an accuracy of the prediction error.

18. The apparatus of claim 15 wherein the code to process
the image data to reduce a prediction error further comprises
code to:

performing sub-integer pixel interpolation of the first set
of image data.

19. The apparatus of claim 15 wherein the code further

comprises code to:

receive an input to selectively enable and disable process-
ing the set of image data, evaluating the prediction
error, and processing the image data.

20. The apparatus of claim 15 wherein the code further

comprises code to:

determine if one or more conditions of the video process-
ing system indicate a desirability of reducing the pre-
diction error.

21. The apparatus of claim 15 wherein each set of image
data comprises a block of data and the block of data is a
member of the group consisting of: a 16x16 partition of
pixel data, a 16x8 partition of pixel data, an 8x16 partition
of pixel data, an 8x8 partition of pixel data, a 4x8 partition
of pixel data, an 8x4 partition of pixel data, and a 4x4
partition of pixel data.

#* #* #* #* #*

